Une équipe de physiciens issus de plusieurs grandes institutions chinoises a récemment conduit une expérience étonnante : pour montrer que la mécanique quantique est encore plus éloignée de la physique conventionnelle qu’on ne le pensait jusqu’à présent, ils ont mesuré une impulsion lumineuse… dans 37 dimensions différentes.
Si cette formulation vous semble déroutante, c’est tout à fait normal. Après tout, on considère généralement que le monde autour de nous existe dans quatre dimensions distinctes : trois dans l’espace, et une dernière représentée par le temps.
Ce modèle standard de l’espace-temps, formalisé par l’illustre Albert Einstein dans sa théorie de la relativité, est à la fois très solide et relativement intuitif ; il permet d’expliquer de très nombreux phénomènes tout en restant cohérent avec ce que l’on observe dans notre vie quotidienne.
Le principe de localité, un pilier de la physique
Ce cadre théorique inclut notamment ce que les physiciens appellent le principe de localité : un objet ne peut être influencé que par son environnement immédiat. Par exemple, si vous placez votre smartphone dans votre sac ou votre poche, il n’a aucune raison de ne pas y rester. S’il semble s’être volatilisé, c’est forcément que vous l’avez oublié quelque part… ou que quelqu’un vous l’a « emprunté » pendant que vous aviez le dos tourné.
Plus largement, ce principe de localité est une des principales fondations de la physique, et même de la science en général. Il est exceptionnellement utile pour décrire les chaînes d’événements qui gouvernent notre monde de la plus petite à la plus grande des échelles. Qu’il s’agisse de particules nanométriques ou de mégastructures cosmiques, le comportement de toute la matière observable semble adhérer rigoureusement à ce principe.
Le paradoxe GHZ, un énorme casse-tête quantique
… ou du moins, c’était le cas avant que les pères de la physique quantique ne viennent jouer les trouble-fêtes. Leurs travaux ont fait émerger des tas de notions extrêmement contre-intuitives. L’exemple le plus connu est sans doute celui du fameux Chat de Schrödinger, enfermé dans une boîte avec un appareillage qui a une certaine probabilité de tuer le pauvre félin à chaque instant. Intuitivement, on peut considérer que le destin de l’animal est déjà décidé avant qu’un observateur ne vérifie son état de santé. Mais selon les principes de la physique quantique, son sort ne sera pas scellé définitivement avant le moment précis où quelqu’un ouvrira cette satanée boîte.
Au-delà de cet exemple, la physique quantique regorge de concepts contre-intuitifs de ce genre. On peut citer l’intrication quantique, un phénomène à travers lequel plusieurs particules se retrouvent corrélées de telle manière que leurs états quantiques sont interdépendants, quelle que soit la distance qui les sépare.
L’intrication n’implique pas une transmission d’informations instantanée ou plus rapide que la lumière, mais elle défie notre conception classique de la localité en montrant que deux particules intriquées peuvent être « liées » entre elles à distance. Une idée particulièrement perturbante pour Einstein, à tel point que lui-même en parlait comme d’une « action effrayante à distance ».
Cette intrication est au cœur d’une autre curiosité scientifique, appelée paradoxe Greenberger-Horne-Zeilinger (ou GHZ). Il repose sur une forme particulièrement intime d’intrication quantique, « l’état GHZ ». Lorsqu’on mesure les propriétés de particules dans cet état, on a tendance à obtenir des résultats qui semblent totalement aberrants et paradoxaux du point de vue de la physique traditionnelle, car ils violent allègrement les principes de localité, de déterminisme et de causalité (la relation logique qui relie une cause à ses effets).
Un succès expérimental à 37 dimensions
C’est là qu’interviennent les chercheurs chinois mentionnés en début d’article. Dans leur expérience, ils ont tenté de prouver que ce paradoxe GHZ n’était pas seulement une expérience de pensée, et qu’il pouvait se manifester de manière concrète dans le monde réel. Par la même occasion, ils souhaitaient aussi explorer jusqu’où il était possible de pousser ces phénomènes en apparence absurdes, pour vérifier à quel point le principe de localité s’écroule dans le cadre de la physique quantique.
Pour y parvenir, ils ont commencé par placer des photons en intrication quantique en utilisant un laser. Ils ont ensuite manipulé ce cortège nanométrique à l’aide d’un processeur photonique, un appareil spécialisé dans le traitement des informations sous forme de photons (au lieu des électrons en informatique traditionnelle). Grâce à ce dispositif, ils ont pu mesurer les corrélations entre les états des particules.
À partir de là, les auteurs ont échafaudé un ensemble de relations mathématiques qui permet d’expliquer les corrélations observées entre ces photons. Or, pour pouvoir le résoudre, ils ont dû représenter les états des photons dans un espace à… 37 dimensions, bien au-delà des 4 qui sont prises en compte par le principe de localité !
Cette phrase peut facilement donner le tournis, car il est difficile de concevoir ce que ces 37 dimensions peuvent représenter. Le point crucial, c’est que dans ce contexte, toutes ces dimensions supplémentaires ne décrivent pas le temps ou un espace physique (les trois dimensions classiques de la réalité observable). À la place, ce sont des dimensions mathématiques abstraites, qui représentent différents aspects de l’état quantique d’un photon.
Ce qu’il est important de retenir, c’est que ces travaux montrent de manière particulièrement spectaculaire que le principe de localité tel qu’on le conçoit intuitivement est profondément mis à l’épreuve lorsqu’on s’aventure dans le domaine quantique.
La relativité à l’épreuve des paradoxes quantiques
Cela signifie-t-il qu’Einstein s’est trompé sur toute la ligne ? Pas si vite. Pour l’instant, sa théorie de la relativité continue de se montrer inébranlable, et permet toujours de décrire le monde qui nous entoure de manière très satisfaisante. Mais ces travaux suggèrent tout de même que l’iceberg de la mécanique quantique est encore plus étendu que prévu, et qu’à l’avenir, nous découvrirons sans doute d’autres exemples où elle s’écarte encore davantage de la physique traditionnelle.
Tout l’enjeu sera d’identifier précisément ces points de rupture pour, idéalement, réconcilier la relativité et la physique quantique dans un cadre théorique unique capable d’expliquer chaque élément de la réalité observable sans la moindre zone d’ombre. La fameuse Théorie du Tout, après laquelle Einstein et ses successeurs n’ont jamais cessé de courir.
Il sera donc passionnant de suivre les prochains épisodes de ce gigantesque feuilleton scientifique qui, un jour, pourrait transformer notre façon de concevoir l’univers et notre propre existence.
Le texte de l’étude est disponible ici.
🟣 Pour ne manquer aucune news sur le Journal du Geek, abonnez-vous sur Google Actualités. Et si vous nous adorez, on a une newsletter tous les matins.